
On Linux and other Unix-like operating systems, there is a set of rules for each file and directory that

define who can access it, and what they can do with it. These rules are called permissions or modes.

Permissions specify what a particular person may or may not do with a file or directory. As such,

permissions are important in creating a secure environment. For instance, you don't want other people

to be changing your files, and you also want system files to be safe from damage (either accidental or

deliberate). Luckily, permissions in a Linux system are quite easy to work with.

Linux permissions dictate 3 things you may do with a file, read, write and execute. They are referred to

in Linux by a single letter each.

• r read - you may view the contents of the file.

• w write - you may change the contents of the file.

• x execute - you may execute or run the file.

With directories:

• r - you have the ability to read the contents of the directory (i.e. do an ls)

• w - you have the ability to write into the directory (i.e. create files and directories)

• x - you have the ability to enter that directory (i.e. cd)

For every file (or directory) we define 3 sets of people for whom we may specify permissions.

• owner - a single person who owns the file. (typically the person who created the file but

ownership may be granted to someone else by certain users)

• group - every file belongs to a single group of people.

• others - everyone else who is not in the group or the owner.

ls -l Part of the output for every entity when we do ls -l looks something like this:

-rwxr-xr--

The first character identifies the file type. If it is a dash (-) then it is a normal file. If it is a ‘d’ then it is a

directory.

The next 3 characters represent the permissions for the owner. A letter represents the presence of a

permission and a dash (-) represents the absence of a permission. In this example the owner has all

permissions (read, write, and execute).

The following 3 characters represent the permissions for the group. In this example the group has the

ability to read and execute but not write. Note that the order of permissions is always read, then write

then execute.

Finally, the last 3 characters represent the permissions for others (or everyone else). In this example

they have the read permission and nothing else.

You can use the -d option to ls to see this for directories: ls -ld

chmod is used to change the permissions of files or directories. It stands for stands for "change mode".

Only the file’s owner or root can change permissions for a file.

General usage:

chmod options permissions filename

Important options:

-R change files and directories recursively

--reference=RFILE Set permissions to match those of file RFILE, ignoring any other specified

permissions

If no options are specified, chmod modifies the permissions of the file specified to the permissions

specified.

You can represent permissions with their alphanumeric characters, or with octal numbers (the digits 0

through 7).

chmod u=rwx,g=rx,o=r myfile

chmod 754 myfile

The octal numbers correspond to r,w,x as follows. Use one octal digit for each of the owner (user),

group, and other.

Octal Binary
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

chown changes the owner and group. Only a privileged process or user, such as root, may change the

owner of a file (this means we can’t run these examples on Isengard or Imagine, but here’s a description

of how they work anyways 😊)

-R and --reference work the same.

Change the owner of file.txt to Sam:
chown Sam file.txt

Recursively grant ownership of the directory /files/work and all files and subdirectories to user Sam:
chown -R Sam /files/work

Change the group of the file to the group “friends”
chown :friends file.txt

id prints user and group information for the specified USERNAME, or, when USERNAME omitted, for
the current user.

-g prints only primary group id number
-G prints all group id numbers
-n uses group names instead of id numbers
-u prints the user id number
-un prints the username (not helpful?)

users prints the names of all users currently logged in to the host.

You can count the current users with users | wc –w

who is very similar. It prints information about all users who are currently logged in.

Some salient options:
-a print all possible information.
-b Display the time of the last system boot.
-d Display dead processes.
-l Print system login processes.
-m Only print information about the user and host associated with standard input (the terminal where

the command was issued).
-q Displays all login names, and a count of all logged-on users.

whoami prints the username associated with the current effective user ID.
same as running id -un

newgrp allows a user to log in to a new group (change the current group ID). This

If a dash (-) is included as an argument, then the user's environment is initialized as though he or she
had just logged in; otherwise, the current working environment remains unchanged.

newgrp changes the current real group ID to the specified group, or, if no group is specified, to the
default group listed in the file /etc/passwd.

newgrp also tries to add the group to the user groupset.

• If the user is root, he or she will not be prompted for a password.

• If the user is not root, he or she will be prompted for a group password if:
o the user does not have a password, but the group does, or if
o the user is not listed as a group member, and the group has a password.

• If there is no group password set, and the user is not listed as a member of the group, the user
will be denied access.

newgrp thehomies

newgrp – thehomies

chgrp changes group ownership of a file or files. An unprivileged user may only change the group of a
file to a group they themselves belong to.

Has -R and --reference

chgrp thehomies file.txt

chgrp -R staff /office/files

groupadd creates a new group.
For this command to work you must have superuser rights or be logged in as root.

groupadd newgroup

The above example would create a new group called "newgroup". This new group could then have users
added to it using useradd -g (to set initial login group) or useradd -G (to add as a
secondary group).

groupdel is used by a superuser or root to remove a group.

gpasswd administers groups. We won’t cover this in detail.
-a user adds a user to the group
-d user removes a user from the group
-r removes the password so that only existing members can log in.

sudo (superuser do) allows a user with proper permissions to execute a command as another user,
such as the superuser. Only users in the /etc/sudoers file may run this command (so again, not us!)

Run a bash script as root (with root permissions and whatnot):
sudo bash myscript.sh

Run the command ls as the user Sam.
sudo -u Sam ls

su (substitute user) changes the current user ID to that of the superuser or another user.

This makes it possible to change a login session's owner (i.e., the user who originally created that session
by logging on to the system) without the owner having to first log out of that session.

Although su can be used to change the ownership of a session to any user, it is most commonly
employed to change the ownership from an ordinary user to the root (i.e., administrative) user, thereby
providing access to all parts of and all commands on the computer or system. For this reason, it is often
referred to (although somewhat inaccurately) as the superuser command. It is also sometimes called the
switch user command.

Superuser (root) is default
su

Change the owner of the current login session to a user named bob:
su bob

Switch the current user ID to that of bob, and set the environment to bob's login environment:
su – bob

sg executes commands as a different group ID.

 The sg command works similar to newgrp but accepts a command. With most shells you
 may run sg from, you need to enclose multi-word commands in quotes.
 Another difference between newgrp and sg is that some shells treat
 newgrp specially, replacing themselves with a new instance of a shell
 that newgrp creates. This doesn't happen with sg, so upon exit from a
 sg command you are returned to your previous group ID.

When new files are created, they have certain permissions determined by the umask. The umask
command shows or sets this mask.

Show the current umask value:
umask

Show a symbolic representation of the current umask value:
umask –S

When a new file is created, each digit of the umask is "subtracted" from the OS's default value to arrive
at the default value that you define. It's not really subtraction; technically, the mask is negated (its
bitwise compliment is taken) and this value is then applied to the default permissions using a logical
AND operation. The result is that the umask tells the operating system which permission bits to "turn
off" when it creates a file.

In Linux, the default permissions value is 666 (rw-rw-rw-) for a regular file, and 777 (rwxrwxrwx) for a
directory. When creating a new file or directory, the kernel takes this default value and performs the
operations listed above to give new files the resulting permissions.

If we do:
umask 022

Then new files have the permissions 644

IMPORTANT: the umask will only remove permissions from the default permissions value, it will never
add them. This means it is impossible to give files the execute permission by default.

This is due to the way the umask works. For example, let’s figure out what the default permission bits
for files will be after the following command:
umask 133

First, we convert the default permissions for files (666) and the umask to their binary representations.

default: 666 -> 110 110 110
umask: 133 -> 001 011 011

We then take the compliment (flip all the bits) of the umask:

001 011 011 -> 110 100 100

Finally, we use logical AND to combine the default and the compliment of the umask to get our result:

 110 110 110

AND 110 100 100

 110 100 100

When we convert our result back into octal, we get 644 (the same as the previous example!).

Essentially, you can think of the umask as specifying which permissions to remove from the default. For
example, our previous umask (133) tells us to remove the execute permission from the owner, group,
and other, and to remove write permission from group and other. Since the default permissions for files
does not include the execute bit anyways, there’s no need to specify removing the execute permission,
but if we do it won’t change anything.

More examples:
Set the umask to give read permissions to the group:
umask g+r

Set the mask so that new files will be readable and writable by the owner, but may not be executed;
group members and others will have no permissions to the file:
umask u=rw,go=

